
Preprint
UCRL-JC-135886

Improving the Extension
Facilities in C+

P.F. Dubois and B.A. Scott

This article was submitted to
8’h International Python Conference
Alexandria, VA
January 24-27,200O

September 24,1999

U.S. Department of Energy

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

September 24,1999

Improving the Extension
Facilities in C+

Paul F. Dubois
Program for Climate Model Diagnosis and
Intercomparison

Lawrence Livermore National Laboratory’
duboisl @lhl.gov

Barry A. Scott
barry @scottb.demon.co.uk

Eighth International Python Conference
January, 2000
Washington, D.C.

1 of7

Abstract

CXX is a facility for extending Python using C++. Recently, the authors have substan-
tially revised and improved the way in which you create extension objects and extension
modules in C++. The method is now much more natural and has much less overhead,
both in the code generated and in the effort needed to create the objects and extensions.

2 of 7 Improving the Extension Facilities in C++

introduction to climate modeling

1 .O Introduction to climate modeling

1.1 CXX

CXX is a package of header files and the supporting implementations for a series of
classes and auxilliary functions to assist the user in writing Python extensions in C++.
CXX is written in standard C++. The source code is available for free redistribution as a
beta release as part of the LLNL Python extensions distribution, which is available at
ftp:l/ftp-icf.llnl.gov/publpython/LLNLDistribution.tgz. Please see the legal notices
enclosed in that package.

1.2 Recent developments in CXX

The idea behind CXX, as described in the paper presented last year [2], is twofold. First,
the C API for Python is encapsulated in some classes such as Object, Diet, and Tuple, so
as to greatly simplify the use of these objects in compiled code. For example, the fol-
lowing CXX code creates a dictionary and adds two named (Python) integers to it:

Diet d;
d r‘one’) = Int (1);
d [“two”] = Int (2);

The CXX class hierarchy for this portion is shown in Table 1.

TABLE 1. CXX Class Heirarchv
Object

‘We
Module
Integer
Float
Long
Complex
Char (Strings of length 1)
SeqBased>

Sequence (= SeqBase<Object>)
String
Tuple
List
Array (NumPy array)

MapBase(T>
Mapping (= MapBase<Object>)
Diet

Exception
StandardError

IndexError
RuntimeError

. . (more classes corresponding to the Python exception heirarchy).

Improving the Extension Facilities in C++ 3of7

Constructing an extension object

In addition there are a number of functions defined at the global (namespace Py) level.
These include the usual binary arithmetic operators and stream output operators.

The second part of CXX was more experimental; it was an attempt to make it easier to
construct your own objects and extension modules, without having to construct odd-
looking tables and use mysterious non-standard constructions such as the infamous
“staticforward” declaration. Barry Scott has substantially revised this section of CXX
with some assistance from Paul Dubois.

One caution for those who are not very experienced at C-F+. This work uses some
advanced C++ techniques, such as templates and inheriting from a class templated upon
the inheriting class. Such readers will should simply try to absorb the gestalt rather than
the details. As a user, advanced techniques are not required; indeed, the purpose of the
work is to reduce the intellectual load on the user, not to increase it.

During the period since the Seventh International Python Conference, C++ compiler
inadequacies have largely disappeared. In particular, CXX can be used with the free
Gnu project C++ compiler, g++. Better performance is still obtainable with compilers
such as the Kuck and Associates KAI compiler, however.

2.0 Constructing an extension object

PythonExtension is a class from which you inherit to create a new Python extension
object. You override behaviors of this class to define Python methods such as repro, and
add methods to the class that are callable from Python as methods on instances of your
new class.

Here, for example, is the interface to an extension object, class “r”, which resembles a
“range” object. CXX’s constructs are in the namespace “Py”, so you can identify them
in what follows because they are preceded by “Py::“.

class r: public Py::PythonExtensionu> (
public:

long start;
long stop;
long step;
r (long start- long stop-, long step- = 1L);
virtual -r()
static void init-type(void); // see discussion below
long length0 const ;
long item(int i) const ;
r* slice(int i, int j) const ;
r* extend(int k) const;
STD::string asString() const ;

// override functions from PythonExtension
virtual Py::Object repro;
virtual Py::Object getattr(const char *name);
virtual int sequence-length();

4 of 7 Improving the Extension Facilities in C++

Constructing an extension object

virtual Py::Object sequence-item(int i);
virtual Py::Object sequence-concat(const Py::Object &j);
virtual Py::Object sequence-slice(int i, int j);

I/ define python methods of this object
Py::Object amethod (const Py::Tuple& args);
Py::Object value (const Py::Tuple& args);
Py::Object assign (const Py::Tuple& args);
Py::Object reference-count (const Py::Tuple& args) ;
1;

Note the inheritance of r from Py::PythonExtension<D. We then override the default
behaviors of the object as desired, for example by defining a method “sequence-item”
to calculate the reaction of an r object to integer subscripting:

7::Object r::sequence-item(int i)

return Int(item(i));
I

Methods such as “amethod” receive as their arguments the Tuple of arguments passed to
Python, and return an Object. Here amethod returns a list consisting of itself and its one
argument:

Py::Object r::amethod (const Py::Tuple &t)
I

t.verify-length(l); //check there is just one argument
Py::List result;
result.appen”d(Py::Object(this));
result.append(t[O]);
return result;

The connection between Python and r is completed by the addition of a constructor
method to one of our Python extension modules, and by the static routine r::init-type@
Here is that static method from class r:

void r::init-type0
(

behaviors().name(“r”);
behaviors().doc(“r objects: start, stop, step”);
behaviors().supportRepr();
behaviors().supportGetattr();
behaviors().supportSequenceType();

add~varargs~method(“amethod”, &r::amethod,
“demonstrate how to document amethod”);

add-varargs-method(“assign”, &r::assign);
add~varargs~method(“value”, &r::value);
add~varargs~method(“reference~count”, &r::reference-count);

Improving the Extension Facilities in C++ 5of7

Constructing Python extension modules

3.0 Constructing Python extension modules

Likewise, the construction of a Python module has been simplified: You create a clas
inheriting from ExtensionModule, and the methods of the class become the Python
methods. Yar also can add items to the module dictionary.

class example-module : public ExtensionModule<example-module>
1
public:

example-module0
: ExtensionModule<example_module>(“example”)

r::init-type(); /I initialize the “r” type discussed above
add-varargs-method(“sum”, ex-sum,

“sum(arglist) = sum of arguments”);
add-varargs-method(“test”, ex-test,

“test(arglist) runs a test suite”);
add-varargs-method(“r”, new-r,

“r(start,stop,stride)“);

initialize(“documentation for the example module”);

Diet d(moduleDictionary());
d[“a-constant”] = Float(3.14159); /I add a famous constant

// to this module

virtual -example-module0 1]

private:
Object new-r (const Tuple &rargs)
I

if (rargs.length() < 2 II rargslengtho > 3)

throw RuntimeError(
“Incorrect # of args to r(start,stop [,step]).“);

Int start(rargs[O]);
Int stop(rargs[I]);
Int step(l);
if (rargs.length() == 3)
i

step = rargs[2];

if (long(start) > long(stop) + 1 II long(step) == 0)
{

throw RuntlmeError(“Bad arguments to r(start,stop [,step]).“);
1
return asObject(new r(start, stop, step));

6 of 7 Improving the Extension Facilities in C++

Summary

Object ex-sum (const Tuple &a)
1

Float f(O.0);
for(int i = 0; i < a.length(); i-t+)
I

f = f + Float(a[i]);

return f;

Object ex-test(const Tuple &a) { implementation omitted)
I

Note the support provided by the CXX machinery. For example, if one of the
arguments to “sum” is not a Python floating-point number, an exception is thrown, any
temporary objects such as f are cleaned up, and a Python exception results.

Now we add the initialization routine Python requires, which now must only construct a
permanent instance of our module class:

void initexampleo
(

static example-module *example = new example-module;

The examples presented here have been somewhat simplified from those in the CXX
package for expository purposes. Potential users should consult the files in the Demo
directory for further examples.

4.0 Summary

A fully object-oriented approach, in which extension objects are constructed by inherit-
ance and the overriding of methods controlling the objects’ behavior, makes for a natu-
ral C++ approach. Likewise, extension modules as classes whose methods become
available from Python seems to us to be natural and easy.

5.0 References

1. This work was produced in part at the University of California, Lawrence Livermore National
Laboratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between the U.S.
Department of Energy (DOE) and The Regents of the University of California (University) for
the operation of UC LLNL. The views and opinions of the authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of Califor-
nia, and shall not be used for advertising or product endorsement purposes.

2. P F. Dubois, “A facility for extending Python in C++“, in Proceedings of the Sev-
enth Internation Pylon Conference, Foretec Seminars, Reston,VA, 1998. pp. 61-
68.

Improving the Extension Facilities in C++ 7 of 7

